- PII
- S30345154S0321059625040065-1
- DOI
- 10.7868/S3034515425040065
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 52 / Issue number 4
- Pages
- 78-93
- Abstract
- Using the example of the rivers of the boreal zone of the Far East of the Russian Federation, it is shown that the dynamic light scattering (DLS) intensity is proportional to the content of large colloidal particles (0.05–1.0 µm) in the filtrates obtained in the process of water preparation for chemical analysis. Accordingly, the DLS method can be used to characterize the content of large colloids in river waters, assess the efficiency of colloid separation from suspended particles, and control membrane clogging during filtration. A significant direct correlation was found between the DLS intensity of filtrates and the concentration of Fe, Al, and Ti in them in accordance with the maximum affinity of these metals to large colloids. This confirms the dependence of the DLS intensity of filtrates on the mass content of large colloids in them. A significant, but less strong relationship is observed with REEs, Th, and other hydrolysates (Zr, Hf, Sc, Ga), in the balance of which large colloids can also play a significant role in the river waters. The concentration of chemical elements for which dissolved forms of migration prevail (major cations, Li, Sr, Ba, Mo, U) or small colloidal forms (DOC, Cu) do not show any connection with the intensity of DLS in filtrates. Information on the content of large colloidal particles in filtrates, obtained by the DLS method, allows us to better understand the causes and scales of spatial and seasonal variability of the concentration of a number of hydrolysates (Fe, Al, Ti, REEs, Th, etc.) in river waters, as well as to control the possible influence of filtration artifacts on the results of chemical analysis of waters.
- Keywords
- химический состав речных вод крупные коллоиды артефакты фильтрации динамическое рассеяние света Дальний Восток РФ
- Date of publication
- 07.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Гордеев В.В., Лисицын А.П. Геохимическое взаимодействие пресноводной и морской гидросфер // Геология и геофизика. 2014. Т. 55. № 5–6. С. 721–744.
- 2. Михайлик Т.А., Тищенко П.Я., Колтунов А.М., Тищенко П.П., Швецова М.Г. Влияние реки Раздольной на экологическое состояниевод Амурского залива (Японское море) // Вод. ресурсы. 2011. Т. 38. № 4. С. 474–484.
- 3. РД 52.24.353-2012 Отбор проб поверхностных вод суши и очищенных сточных вод. М.: Росгидромет, ГХИ, 2012. 35 с
- 4. Чудаева В.А. Миграция химических элементов в водах Дальнего Востока. Владивосток: Дальнаука, 2002. 391 с.
- 5. Шестеркин В.П. Изменение химического состава вод Амура в период исторического наводнения в 2013 году // Вод. ресурсы. 2016. Т. 43. № 3. С. 287–296.
- 6. Шулькин В.М., Богданова Н.Н., Еловский Е.В. Влияние кольматирования фильтров на определение концентрации истинно-растворенных и коллоидных форм миграции химических элементов в речных водах // Вод. ресурсы. 2022. Т. 49. № 1. С. 91–102. DOI: 10.31857/S0321059622010163
- 7. Anderson W., Kozak D., Coleman V.A., Jamting A.K., Trau M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions // J. of Colloid and Interface Sci. 2013. 405. P. 322–330.
- 8. Cuss C.W., Donner M.W., Grant-Weaver I., Noernberg T., Pelletier R., Sinnatamby R.N., Shotyk W. Measuring the distribution of trace elements amongst dissolved colloidal species as a fingerprint for the contribution of tributaries to large boreal rivers // Sci. Total Environ. 2018. V. 642. P. 1242–1251.
- 9. Filella M., Zhang J., Newman M.E., Buffle J. Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations // Colloids Surfaces A: Physiсochem. Eng. Aspects. 1997. V. 120. P. 27–46.
- 10. Filippov S.K., Khusnutdinov R., Murmiliuk A., Inam W., Zakharova L.Ya., Zhang H., Khutoryanskiy V.V. Dynamic light scattering and transmission electron microscopy in drug delivery: a roadmap for correct characterization of nanoparticles and interpretation of results // Mater. Horiz. 2023. 10. P. 5354–5370.
- 11. Gaillardet J., Viers J., Dupre B. Trace elements in river waters. Surface and groundwater, weathering and soils. In: Treatise on geochemistry / Eds H.D. Holland, K.K. Turekian. Oxford, UK: Elsevier-Pergamon, 2003. V. 5. Р. 225–272.
- 12. Hirst C., Andersson P.S., Shaw S., Burke I.T., Kutscher L., Murphy M.J., Maximov T., Pokrovsky O.S., Morth M., Porcelli D. Characterization of Fe-bearing particles and colloids in the Lena River basin, NE Russia // Geochim. Cosmochim. Acta. 2017. 213. P. 553–573.
- 13. Horowitz A.J., Lum K.R., Garbarino J.R., Hall G.E.M., Lemieux C., Demas C.R. Problems associated with using filtration to define dissolved trace element concentrations in natural water samples // Environ. Sci.Technol. 1996. V. 30. 954.
- 14. Ilina S.M., Lapitsky S.A., Alekhin Y.V., Viers J., Benedetti M., Pokrovsky O.S. Speciation, size fractionation and transport of trace element in the continuum soil water–mire– lake– river–large oligotrophic lake of a subarctic watershed // Aquat. Geochem. 2016. 22 (1). P. 65–95.
- 15. Ingri J., Widerlund A., Land M., Gustafsson O., Andersson P., Ohlander B. Temporal variations in the fractionation of the rare earth elements in a boreal river; the role of colloidal particles // Chem. Geol. 2000. 166. P. 23–45.
- 16. Krickov I., Pokrovsky O.S., Manasypov R., Lim A., Shirokova L.S., Viers J. Colloidal transport of carbon and metals by western Siberian rivers during different seasons across a permafrost gradient // Geochim. Cosmochim. Acta. 2019. 265. P. 221–241.
- 17. Langevina D., Raspauda E., Mariota S. Towards reproducible measurement of nanoparticle size using dynamic light scattering: Important controls and considerations // NanoImpact. 2018. V. 10. P. 161–167.
- 18. Morrison M., Benoit G. Filtration artifacts caused by overloading membrane filters // Environ. Sci. Technol. 2001. V. 35. P. 3774−3779.
- 19. Pokrovsky O.S., Viers J., Shirokova L.S., Shevchenko V.P., Filipov A.S., Dupre B. Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in the Severnaya Dvina River and its tributary // Chem. Geol. 2010. 273. P. 136–149.
- 20. Pokrovsky O.S., Manasypov R.M., Loiko S.V., Shirokova L.S. Organic and organo-mineral colloids in discontinuous permafrost zone // Geochim. Cosmochim. Acta. 2016. V. 188. P. 1–20.
- 21. Pokrovsky O.S., Schott J. Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia) // Chem. Geol. 2002. V. 190. P. 141–179.
- 22. Shiller A.M. Syringe filtration methods for examining dissolved and colloidal trace element distributions in remote field locations // Environ. Sci. Technol. 2003. V. 37. P. 3953–3957.
- 23. Shulkin V.M. The Use of Centrifugation for the Separation of Suspended and Colloidal Forms of Chemical Elements in the Analysis of River Waters: Possibilities and Limitations // Water Resour. 2024. V. 51. № 4. P. 550–561. DOI: 10.1134/ S0097807824700945
- 24. Vasyukova E.V., Pokrovsky O.S., Viers J., Oliva P., Dupre B., Martin F., Candaudap F. Trace elements in organic and iron-rich surficial fluids of the boreal zone: Assessing colloidal forms via dialysis and ultrafiltration // Geochim. Cosmochim. Acta. 2010. 74. P. 449–468.
- 25. Wilde F.D., Radtke D.B., Gibs Jacob, Iwatsubo R.T. Processing of water samples (ver. 2.2): U.S. Geological Survey Techniques of Water-Resources Investigations, 2004 with updates through 2009. Book 9. Chap. A5. http://pubs.water.usgs.gov/twri9A5 (accessed: April 17, 2024)