ОНЗ Водные ресурсы Water Resources

  • ISSN (Print) 0321-0596
  • ISSN (Online) 3034-5154

Сезонная изменчивость концентрации биогенных веществ и органического углерода в реках Камчатке и Аваче (полуостров Камчатка) в 2023 г.

Код статьи
S30345154S0321059625010102-1
DOI
10.7868/S3034515425010102
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 52 / Номер выпуска 1
Страницы
136-149
Аннотация
В 2023 г. в основные фазы водного режима проведены четыре экспедиции для отбора проб воды от истоков до устья в реках Камчатке и Аваче, впадающих в зал. Камчатский и бух. Авачинскую Восточной Камчатки соответственно. В р. Камчатке установлены сезонные экстремумы концентраций и потоков с речным стоком минерального и органического фосфора, а также органического углерода в период таяния снега в долине реки и на высокогорье (май–июнь), что в меньшей степени проявилось для р. Авачи. Годовые потоки со стоком рек Камчатки и Авачи составили соответственно 4565 и 289 т/год для Pобщ, 9526 и 2006 т/год для Nобщ, 60485 и 3992 т/год для РОУ. Обсуждены источники и потоки биогенных веществ на водосборах исследуемых рек и потенциальные отклики водных экосистем приемных бассейнов в связи с вулканизмом, в том числе в связи с извержением вулкана Шивелуч, произошедшим 11 апреля 2023 г.
Ключевые слова
речной сток биогенные вещества углерод вулканизм прибрежно-морская экосистема Восточная Камчатка
Дата публикации
01.01.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
21

Библиография

  1. 1. Батурин Г.Н., Зайцева Л.В., Маневич Т.М. Геохимия вулканических пеплов исландского и камчатских вулканов // ДАН. 2012. Т. 443. № 3. С. 342–346.
  2. 2. Влодавец В.И., Пийп Б.И. Каталог действующих вулканов Камчатки // Бюлл. вулканологических станций. 1957. № 25.
  3. 3. Горин С.Л. Гидролого-морфологические процессы в эстуариях Камчатки. Автореф. дис. … канд. геогр. наук. М.: МГУ, 2009. М.: 26 с.
  4. 4. Захарихина Л.В., Литвиненко Ю.С. Вулканизм и геохимия почвенно-растительного покрова Камчатки. Сообщ. 3. Элементный состав растительности вулканических экосистем // Вулканология и сейсмология. 2019. № 4. C. 40–51.
  5. 5. Коновалова Г.В. “Красные приливы” у Восточной Камчатки: посвящается памяти Игоря Ивановича Куренкова: атлас-справочник. Петропавловск-Камчатский: Камшат, 1995. 56 с.
  6. 6. Лепская Е.В., Тепнин О.Б., Коломейцев В.В. и др. Исторический обзор исследований и основные результаты комплексного экологического мониторинга Авачинской губы в 2013 году // Исследования водных биологических ресурсов Камчатки и северо-западной части Тихого океана. 2014. Вып. 34. 5–21.
  7. 7. Малик Н.А. Импактный вклад извержений вулканов в формирование химического состава сезонного снежного покрова (Камчатка) // Лед и снег. 2010. № 4. 45–52.
  8. 8. Михайлик Т.А., Тищенко П.Я., Колтунов А.М. и др. Влияние реки Раздольной на экологическое состояние вод Амурского залива (Японское море) // Вод. ресурсы. 2011. Т. 38. № 4. С. 474–484.
  9. 9. Набоко С.И. Вулканические эксгаляции и продукты их реакций // Тр. лаборатории вулканологии. Вып. 16. М.: Изд-во АН СССР, 1959 / Отв. ред. В.И. Влодавец. 303 с.
  10. 10. Пийп Б.И. Извержение Авачинской сопки в 1945 году // Бюлл. вулканологии. 1953. С. 6–23.
  11. 11. Ресурсы поверхностных вод СССР. Т. 20. Камчатка / Под ред. М.Г. Васьковского. Л.: Гидрометеоиздат, 1973. 368 с.
  12. 12. Ресурсы поверхностных вод СССР. Т. 20. Камчатка / Под ред. В.Ч. Здановича. Л.: Гидрометеоиздат, 1977. 294 с.
  13. 13. Семкин П.Ю., Тищенко П.Я., Павлова Г.Ю. и др. Влияние речного стока на гидрохимические характеристики вод Удской губы и залива Николая (Охотское море) в летний сезон // Океанология. 2021. Т. 60. № 3. С. 387–400.
  14. 14. Тищенко П.Я., Семкин П.Ю., Павлова Г.Ю. и др. Гидрохимия эстуария реки Туманной (Японское море) // Океанология. 2018. Т. 58. № 2. С. 192–204.
  15. 15. Фролова Н.Л., Становова А.В., Горин С.Л. Режим стока воды в нижнем течении реки Камчатки и его многолетняя изменчивость // Исследования вод. биол. ресурсов Камчатки и северо-западной части Тихого океана. 2014. № 32. С. 73–78.
  16. 16. Battin T.J., Kaplan L.A., Findlay S. et al. Biophysical controls on organic carbon fluxes in fluvial networks // Nature Geosci. 2008.V. 1. P. 95–100.
  17. 17. Bernard C.Y., Dürr H.H., Heinze C. et al. Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean - a model study // Biogeosci. 2011. V. 8. P. 551–564.
  18. 18. Beusen A.H., Bouwman A.F., Van Beek L.P. et al. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum // Biogeosci. 2016. V. 13. P. 2441–2451.
  19. 19. Beusen A.H., Doelman J.C., Van Beek L.P.H. et al. Exploring river nitrogen and phosphorus loading and export to global coastal waters in the Shared Socio-economic pathways // Global Environ. Change. 2022. V. 72. 102426.
  20. 20. Bisson K.M, Gassó S., Mahowald N. et al. Observing ocean ecosystem responses to volcanic ash // Remote Sensing Environ. 2023. V. 296. 113749.
  21. 21. Bouwman A.F., Van Drecht G., Knoop J.M. et al. Exploring changes in river nitrogen export to the world’s oceans // Global Biogeochem. 2005. V. 19. Iss. 1. GB1002.
  22. 22. Browning, T.J., Stone, K., Bouman, H.A. et al. Volcanic ash supply to the surface ocean–Remote sensing of biological responses and their wider biogeochemical significance // Frontiers in Marine Science. 2015. V. 2. https://www.frontiersin.org/articles/10.3389/fmars.2015.00014
  23. 23. Chemtob S.M., Rossman G.R., Young E. D. et al. Silicon isotope systematics of acidic weathering of fresh basalts, Kilauea Volcano, Hawai’i // Geochim. Cosmochim. Acta. 2015. V. 169. P. 63–81.
  24. 24. Cole J.J., Prairie Y.T., Caraco N.F. et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget // Ecosystems. 2007. V. 10. P. 172–185.
  25. 25. Dürr H. H., Meybeck M., Hartmann J. et al. Global spatial distribution of natural riverine silica inputs to the coastal zone // Biogeosci. 2011. V. 8. P. 597–620.
  26. 26. Frogner P., Gislason S.R., Oskarsson N. Fertilizing potential of volcanic ash in ocean surface water // Geol. 2001. V. 29. P. 487–490.
  27. 27. Ganey G., Loso M., Burgess A. et al. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield // Nature Geosci. 2017. V. 10. P. 754–759.
  28. 28. Grasshoff K., Ehrhard M., Kremling K. Methods of Seawater Analysis. Weinheim, Germany: Verlag Chemie, 1983. p. 419.
  29. 29. Hartmann J., Moosdorf N., Lauerwald R. et al. Global chemical weathering and associated p-release – the role of lithology, temperature and soil properties // Chemical Geol. 2014. V. 363. P. 145–163.
  30. 30. Hodgkiss I., Ho K. Are Changes in N: P Ratios in Coastal Waters the Key to Increased Red Tide Blooms? Berlin; Heidelberg, Germany: Springer, 1997. P. 141–147.
  31. 31. Hoffmann L.J., Breitbarth E., Ardelan M.V. et al. Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi // Marine Chem. 2012. V. 132. P. 28–33.
  32. 32. https://gmvo.skniivh.ru/
  33. 33. https://allrivers.info/gauge/kamchatka-klyuchi
  34. 34. Huang K., Zhuang Y. Wang Z. et al. Bioavailability of Organic Phosphorus Compounds to the Harmful Dinoflagellate Karenia mikimotoi // Microorganisms. 2021. V. 9. 1961.
  35. 35. Ibarra D.E., Caves J.K., Moon S. et al. Differential weathering of basaltic and granitic catchments from concentration–discharge relationships // Geochim. Cosmochim. Acta. 2016. V. 190. P 265–293.
  36. 36. Jones M.T., Gislason S.R. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments // Geochim. Cosmochim. Acta. 2008. V. 72. 3661–3680.
  37. 37. Li Y., Keppler H. Nitrogen speciation in mantle and crustal fluids // Geochim. Cosmochim. Acta. 2014. V. 129. P. 13–32.
  38. 38. Longman J., Palmer M.R., Gernon T.M., Manners H.R. The role of tephra in enhancing organic carbon preservation in marine sediments // Earth-Sci. Rev. 2019. 192. P. 480–490.
  39. 39. Mather T.A, Allen A.G., Davison B.M. et al. Nitric acid from volcanoes // Earth and Planetary Sci. Lett. 2004. V. 218. Iss. 1–2. P. 17–30.
  40. 40. Medina M., Kaplan D., Milbrandt E.C. et al. Nitrogen-enriched discharges from a highly managed watershed intensify red tide (Karenia brevis) blooms in southwest Florida // Sci. Total Environ. 2022. V. 827. 154149.
  41. 41. Meybeck M. Carbon, nitrogen and phosphorous transport by world rivers // Am. J. Sci. 1982. V. 282. P. 401–450.
  42. 42. Nixon S.F. Coastal marine eutrophication: А definition, social causes, and future concerns // Ophelia. 1995. V. 41. P. 199–219.
  43. 43. Olgun N., Duggen S., Andronico D. et al. Possible impacts of volcanic ash emissions of Mount Etna on the primary productivity in the oligotrophic Mediterranean Sea: Results from nutrient-release experiments in seawater // Mar. Chem. 2013. V. 152. P. 32–42.
  44. 44. Orlova T.Y., Aleksanin A.I., Lepskaya E.V. et al. A massive bloom of Karenia species (Dinophyceae) off the Kamchatka coast, Russia, in the fall of 2020 // Harmful Algae. 2022. V. 120. 102337.
  45. 45. Paerl H.W. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources // Limnol. Oceanogr. 1997. V. 42. P. 1154–1165.
  46. 46. Remias D. Cell structure and physiology of alpine snow and ice algae // Plants in alpine regions / Ed. C. Lütz. Vienna: Springer, 2012. 175–185.
  47. 47. Schopka H.H., Derry L.A., Arcilla C.A. Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines // Geochim. Cosmochim. Acta. 2011. V. 75 P. 978–1002.
  48. 48. Schopka H.H., Derry L.A. Chemical weathering fluxes from volcanic islands and the importance of groundwater: Тhe Hawaiian example // Earth Planetary Sci. Lett. 2012. V. 339–340. P. 67–78.
  49. 49. Semkin P.Yu., Pavlova G.Yu., Lobanov V.B. et al. Nutrient Flux under the Influence of Melt Water Runoff from Volcanic Territories and Ecosystem Response of Vilyuchinskaya and Avachinskaya Bays in Southeastern Kamchatka // J. Marine Sci. Engineering. 2023. V. 11. 1299.
  50. 50. Schuler C.G., Mikucki J.A. Microbial ecology and activity of snow algae within a Pacific Northwest snowpack // Arctic, Antarctic Alpine Res. 2023. V. 55 Iss. 1.
  51. 51. Shen A., Liu H., Xin Q. et al. Responses of Marine Diatom–Dinoflagellate Interspecific Competition to Different Phosphorus Sources // J. Mar. Sci. Engineering. 2022. V. 10. 1972.
  52. 52. Sterner R.W., Elser J.J. Ecological stoichiometry // Ecological Stoichiometry. Princeton, NJ, USA: Princeton Univ. Press, 2017.
  53. 53. Symonds R.B., Reed M.H., Rose W.I. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes // Geochim. Cosmochim. Acta. 1992. V. 56. P. 633–657.
  54. 54. Wen Zh., Song K., Shang Y. et al. Natural and anthropogenic impacts on the DOC characteristics in the Yellow River continuum // Environ. Pollution. 2021. V. 287. 117231.
  55. 55. Zhang J., Tishchenko P.Ya., Jiang Z.J. et al. Diverse nature of the seasonally coastal eutrophication dominated by oceanic nutrients: An eco-system based analysis characterized by salmon migration and aquaculture // Marine Pollution Bull. 2023. V. 193. 2023. 115150.
  56. 56. Zhang Q.-C., Wang Y.-F., Song M.-J. et al. First record of a Takayama bloom in Haizhou Bay in response to dissolved organic nitrogen and phosphorus // Marine Pollution Bull. 2022. V. 178. 113572.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека